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A SCORE FOR CORRECT DATA ASSOCIATON IN MULTI-TARGETTRACKING

D. L Alspach and R. N. Lobbia
ORINCON CORPORATION

La Jolla. California 92037

SUMMARY scora track competes for the same measurements. If two or more

I the real-world multi-target tracking problem, there exists the pm- trgets compete for the sm measurements, several situstgom can
bility for many things to go wrong. Typical problems which arise occur. These include the possibilities that the two trets are lumped
include: too few tracks are fanned; too many tracks an formed (false together. On taret is rejected, the targets et mixed with track points
tracks); and inaccurate position, counc, and speed estimates are aigned to clutter and two "bad" tracks reported, or the case that all
reported. The above difficulties ar often the result of incorsect alloca- points re assigned to clutter. Its possible. though perhaps at nor-
tion of data to individual tracks. Algorithms, while estimating the ral, to rind situations where the choice of the best nonoverlapping
motion of a given target, inadvertently mix in clutter and/or measure- feasible track does not correspond to a best surveillance picture. This
ments from another target. In order for correct allocation of data to a is quite easy to do If the tracks overlap and compete for the same
given track to be made. one must have an effective scoring formula; measurements.
that is, some means of determining how likely a given assignment of Many trackers consider alternate hypotheses as far as assigning men-
data is. To be effective, a scoring formula must produce (on the ever- Sucements to a track. However, once a decision has been made that a
age) a better score for correct assignments than for incorrect assign- measummant belorwI with another group of measurements, this deci-
ments. Information useful in the scoring process includes a priori intel- sift is not re4xmined. Once the decision has been made to assign a
ligeoce data (such as initial target locations), models of target motion, piece of data to a "tack," that decision is final. This is done because
models of the transmission channel, and expected moments of clutter the system usually requires "an answer." Also, there is always new
for the sensor pin setting being used. Basically, the score is derived data coming into the tracker allowing new hypothesis tests. In addi-
from the residuals which come out of the processing of a batch of data ion, there is a limited amount of computer response. One could say
with the extended Kalman filter. ihis is used to evaluate the likelihood that the hypothesis testing is directed to make a decision on the
of potential tracks. Although the "likelihood" has an intuitive mpning. proper surveillance picture or that the tracker is "decision directed."
the term is used here to mein the probability density function p l) of In the next section, we will se bow effective scoring algorithms ar
the traci'. he expected cost of a given assignment is deri with develo d-ones which can handle the alternate scenarios posed above.
the theory of extremals being used to obtain the expected cost of add- Following this, in Section 3, a refinement to this scoring algorithm is
ing a clutter point ina track. The resulting expected cost is then shown Proposed and it is seen that the average cost incurred for sii
to behave in a quantitative fashion and this can be visualized from a measurements to tracks can be visualized from a geometrical view-
geometric viewpoint point. In particular, It will be shown quantitatively that there exists

ea iuim1ue number of points (measurements) in a given track that yields
f 1. INTRODUCTION an average minimum cost. Incorrectly assigning clutter points to this

In the last few years a number of approaches to the problem of track and wrongly assigning points to clutter will, on the averap.
tracking multiple targets in a cluttered environment have been pub- increase the cost in a well-defined manner.
lished. Some aspects of the problem that have been considered in
some subsets of these publications include the problem of false alarms
or missing measurements, track initialization, multiple measurement
types (fS) and target classification. 2. SCORING ALGORITHMS

Many of the so-called multi-target trackers described in the open-
literature really deal only with the problem of one target in clutter. In order for a correct assignment of measurement data to a given
This hypothesis of only one target can greatly restrict the viability of track to be made, we must have an effective scoring formula, Le.,
a multi-target tracker to sort out confused situations. some means of determining how likely a given assignment of data is.

Of the trackers that have been proposed, and in some cases imple- To be effective, a scoring formula must produce (on the average) a
mented, one can see certain similarities and differences which allow better score for correct assignments than for incorrect assipnments.
the trackers to be grouped into certain classes. The grouping and Information useful in the scoring process includes a priori intelligence
certain applications of these groups has led to the following thoughts. data (such as initial target locations), models of target motion, and

Perhaps the most fundamental aspect of a tracker is how It handles expected amounts of clutter for the sensor gain setting being used.
and interacts with the data. The data is after all our handle on the real Basically, the score is derived from the residuals which come out of
world and all the information we have about a specific tracking realiza. the processing of a batch of data with thc extended Kalman filter. This
tion is contained in the data. A second fundamental aspect of the is used to evaluate the likelihood of potential tracks. Although "Ukeli-
multi-target tracking in clutter problem is that of alternate hypotheses. hood" has a useful Intuitive meaning, we use the term to mean the
It is posiuble to derive the probability distribution of tracks and clutter probability density function p( x) of the track X.. The concepts we use
points if one carefuly specifies the a priori probability base, i.e., the are well-known, since most of the work in estimation theory pertains
probabilistic target models, probabilistic measurement models, etc. to situations where all the observations Z a (z11. z%,- .. zn] are due to
In very simple eaes where one can get the optimal solution, one finds a single target. An obvious example is the stochastic linear system
this consists of all possible configurations of the data into the sets. In
each configuration each data set represents a possible alternate track akel Akxk + Bkuk, k = 0. i, . (1)
or the set of clutter points. A probability measure is assigned to each
possible total surveillance region picture. This globally optimal zk = Ckxk + vk, k a t. " ", n, (2)
approach is generally not reasonable for implementation and approxi-
mate or suboptimal approaches must be considered, with states I xk) C Rx, observations 1zk] C pz process no e ( uki C Ru.

Several approaches focus entirely on the construction of the sets of and measurement noise [vk) C Rv.Ak, Bk, Ck are matrices of appropri-
data (the construction of feasible tracks). It is this latter philosophy ate dimension that may vary with time. The initial state xo is a Gaussian
that is being addrsed in this paper. random vector with covariance P0, independent of the processes 1uk

Conceptually, using maximum likelihood tchniques, various com- and (vk) . which are themselves zero mean white Gaussian noise with
binldons of data are tried and than -cured" using loI-lkellhood cOvariances (00 and 114 k" Under th ' amauptn%., the well
functions. The best fit to the targef model gets the lowest score and known Kalman equations provide minimum variance unbiased estimates
thlis Ionsderd to be one of the tracks in the reion If no other low (ki of the states based on al post data:



t~~~hl Oily =W Ak11k* it uer1919i1 10wuu~ iu d~ SUn paI. tji~eL Of %1466114 p.i%.0

Kk - kC ,L*Ck~lpkCk+l + KklY', 4 coarse test. (7

Pk+I (I.-IKkCk I)Pk. k O0...,. (6) a V k rigkat

When nonhinear measurements are involved, a simple linearization &~ !& C1,(8

process (the extended Kalman tilter) is used. The equations remain and, finally, the likelihood test. Thre coars test checks the maltud- oef
exactly the same. except that the ternm the maximum component of the vector 4E R2 aginst Ok, and is

included because it is computationally cheaper to perforn than the fine
ZkI CkI~lk(7) test. The constants Ok and ?k can be chosen so that

in the first equation above is replaced by lzIkjA VI 61, 4 7 {zkI 1161,11- -CP (19)

One difficulty with this approach is that because of the "deterministic-
where hk~l(.)denotL's the nonlinear relabionship between the measure- terms in the likelihood function
ments and state vector, and the Ck-matrix becomes n

Ck ah~x) 9) ndm(t) in 2w E-. In (20)Ck ax ()kal

it is difficult to compare some of the tracks or different length. It is
It is natural to compute the likelihood function p(X ) for the track also difficult to assess; the absolute goodness of a score. Theref'ore, an

AC Z based On the K~alman filter state estimates. The innovations alternate score With a more absolute meaning can be defined. This is
sequence is an integral part of this computation, which is a sequence of described in the next section.
the measurement residuals:

6k+ 1 2ktl *Ck+ IAkkk- k a0, 1, .., n. (10) 3. REFINED SCORING
For track i at stage kt define the stagewise chi-squared score

The (negative) log likelihood function is given in terms of 16 0i by SL- (4L- 1k)T -1 (4i- 2L(2
n nk k

OXA) a ndim(z)lIn 2*4 +~ E i I Vk I + +~ E &IV~k6k- (11) This has the features-if all measurements have been assigned to the
IW - k-I correct targets and all filter parameters chosen com~ctly-that

Tbe covariance matrix for the measurement residual, Vk- can be cot E ISI) - E IS,5  2 (2

puted directly: E I(Sk. 2) 2) 4 (23)

Vk - C,5+l kCJ1+l + Rk+l, k-I1, 2. ... , n. (I)2 (24)

Each feasible track is the result of a hypothesis test that uses theU()=0S<
track likelihood function p(7,) (or equivalently, the negartive log likeli- f(S) - e51 2U(S); U() 0,S)
hood c(X)) detennined from the Kalman filter. Since the density U(S)- aI, S -a 0 (5
function of the alternative hypothesis (that A is not a track) is unknown, where E(-3 indicates the expected value operator. *SI; is the stantlaril

the ecison ule s siplydeviation Of Sk, and f(S) is the appropriate density function for a two-
- ln(A f 1kl~-) ~dimensional random variable S. Define thL cumulative clri-squared score

-c( A) - In p(A I Ilk ) < On -.A F . (14) Si - : S1. ' 26

Based on the log likelihood decision function, the feasible track set is For easy evaluation on a single track an evaluation cost that would be

F - AIX Z" I'P(X I Rk ) n) > On~ quite meaningful would be

-i _L Si. (27)
Primarily, the only random component of c( A) isN

zgtylg , (16) For this cost function the statistical parameters are

*which for real tracks is a ehi-squared random variable with n -dimension EC)-2(8

(z) degrees of freedom. * Therefre. errot probabilities can easily be com- E ((C- 2)2) 4/Ni OC. - 2/Np%(29
puted for the hypothesis ltt to predict tireaceuracy of feasible track con- I
struction. This has a critical impact on the ultimate accuracy of the track- (i1
ing algorithmn, since a real track mistakenly exclused from F cannot be fc(y) N - Y~~r e-'v" Uxy) (30)
used in The subsequent Bayesian decision process. 2 ir(N,)

For display purposes the use of C3 as a value measure of a single track
makes a great deal of inturitive sense.

Values of Ci << 2 for reasonable length tracks teld to imply that the
filter parameters are set too loose-. Thus by reducing QOad/rR, 1 n

*Dm Io tbe tandem atur of 'tie nvasrawef arival time sod of the uar ,ad/ . n
wirish Ulm$ "11iW tReal maaftmeion." Ilia rCWievtPNien or Vil is aho rado could obtain tighiter tracks. Tracks for which C1 Xs 2 clearly represnt
ip aur but lii bikrd to c0ap., is Nwsnin5 from one fV0tuatiun0 to 110 at. bad data assignment which shoul trot Ihe kept. More prtchisly. If
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Ci -2 + a2/NIV (j I) track will g'r.j o aL uIau rngsauewu jto %an4 j~,~Il
considler lihe two-djmensponal meaburement vectur (rI,* e~ihred as

when as3 (for a 3-sigma caow) indicates either that incorrect data has Figure 2.
been assipned to Ilse track or that Ilse filter parameters (QR) are too If a clutter point is added to the track. lte increase in score ont tlic
smull. While track will be given by hquations (221 jand (37). Thse datlerenee ai lisaf

now the value of the sore an be Writteni as
Ci 4 2-2/N,%. N,>3 for pu3l (32) C a L .L ~I L Nc )SeC+ I. (41)

indicates that the filter parameters (0,R) are set too large. M M HC N

For a total surveillance region picture at M measurement points andi
L tracks, one has: "wo al rc

Nwitier ofFowlsposets aft Properi)

Trsi N,. ______ ~ Tae Here Cie s the cost for assinng one clutter point to tie track. C'j

2 C2  Nj is a random Variable and its distribution depends on t distribution
of the clutter points. From Equation (21).

CC, (4It k)Vi'(4c-' (42)
L CL NLk V

where 4k are the r, a points Asor the clutter point. The distribution of
this random variable depends on the random nature or the clutter.

If the distance of the clutter point from the predicted point is assumed
The score for the total area should be made up of these scores and the to be Gaussian in r and a with zero mean, the distance from the pre-

cost for assigning a point to clutter. The number of points in clutter is dicted point will be Rayleigh distributed and the cost or score C * the
Ne, the number of points assigned to targets is Np. and the total number weighted square of the distance (42). will have an exponential density
of measurements are M. Thcsc arc related by

-L f (c) = -c/202 u(c); u(c) a0. c<O0 (43)
M NC+Np Np N5 . (33) Cj 2o2 u(C) l, c100

A meaningful score could be defined as: Where a2is a measure of the dispersion of the clutter points with
L respect to the mid- or tracker-predicted point. The uncertainty. e,

S Ni~+NCSC(34) takes into account the unequal variance in r and a and is riven by:

2- .2 (range ofta in surface) (range of r in surface) (44)
00r

Where SC is a score defined for a clutter point. ffallthe measurements
are correctly assigned to the track: The score for the closest clutter point to a point predicted by the

L tracker (closest in lite sense or having the smlIlSt score defined by
E(S) 0 2 1: Ni + NCSC (35) (42)) will be distributed as follows (x - scure or the closest point):

jul F1(x) a probability that the closirst clutter point out of

a2(M -NC) + NCS. (36). NC having a score less thtan or equal to X.

If we define the clutter score. So. and a total surveillance score as F(X) I - ex/2 02 (45)

C =.S (37) From the theory ot extremais, it is obvious ohw this distribu-
li tion is identical to the probability distribution or the event defined

where, ifall the measurement points belong to the track, below, . V
.1. (S)= .. ((1st NC * 38) Fx(x) a (probability that all of the NC clutter points have

E(C) - I () 2A C NC SCI38 score less than or equal to 1)

or

E(C) =2 H-NC + EC SC (39) F5(x) a I - (probability that all NC clutter points have
M M scores greater than x)

so that a plot of the score tor a global surveillance region for a real case From (43). It follows that the probability that the score of any one or
of Np measurements assigned to Ne targets withI all points assigned cor- thNCOteponsbigraerhnx6gvnby
rectly and Nc clutter points can be geometrically described by Figure 1. teN lte onsbiggetrttnai ie y

*The curve from N=0, that is, a1l points assigned to clutter, to N=Np. ax~2(6
the correct number of points assigned to clutter, is just a straight line (6

descibedby:Assuming the dlter points are independent aftone another, the
E(S) 2T~k + -L SC(40) probability that all or the NC clutter points have scores greater than

()*2MN) * i Sx (4) ais given by

where 0 NCx/2o 2

NC ari frm toM -Npand the probability that all of these clutter points have score les than
De-yond the point (NuNp). a clutter point must be assigned to the track or equal to is Is:
fwAuiumlng Jait one track in clutter). The 6.njt tos assign a single clutter ;Ncx/2o .27
lpti Iso the track can he eakimlialed In lte following nster: A given I447)
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old dusmutsy Iussetom..: III ellect, 11m Ia. Use bus" at aen Invcisisee Iype-fike lugtntvi Sin'

i a decreavang liear function.
.NcsI 2. 08g) Since. on the average. #2 >>SC,thbe da"eof the rilhnd alde of

2.2 the curve in Figure I is Concave and misnotimaeally increassina.
Note the two regions of this figure. In one part fewer points aft

The expected value of the eost or assigning the closest Chatter Point to a assigned to tracks than actually ame available. i.e.. too many detecionvbt track isthen Sim by: were misned. In the other half or The figure, fale aoams or clatter

E(x) xfx~x 22points Wore asspnd to tracks. In both parts or thie cusev the assess?'
E~x w .2(49) tion is made that the data association as donet in an optimal manner on

NCthe average. Thus if a clutter point is added to a track. it is the clutter
NC point that? lies "clomet- to a track of those unassigned. The curve also

The expected cost for assiging the next nearest point to a track is ansuf? Out iall melasuremen~its correctly a5sitied as track points aft
assigned to the comet track. Wrong assignments of data would, or
course, make for even worse scores "an the average."

(Nc- 1) 4. CONCLU)SIONS

and, finally, the expected cast for adding the kth closest clutter point In the last section, it was shown that the refined scoring algorithm

out of NC to a track is given by - possesses appealing propcrties from a geoimetric viewpoint. There
exists a unique number of points in a track that resoults in lower average

(5) cost than any other number. Also, the senisitivity of tlse scare to varia-

N+ I-k (S) tions in assigned number of track points can be controlled by the clutter

C score, SC. This is readily apparent from Firure 1.
'This scoing algorithm is therefore a very uscfut approach in extract-Note that in computing the expiected value of the total cost function m lte onsoto ie agttak

defined in (41). one must also account for the linear decreas in cost Thie algorithm is currently being applied to an ocean surveillance
cauu-d by the decreasing weighting coefficient (NC-k) on SC when k problem and the resuts or this are very encouraging. For a given data
clutter points; are incorrectly assigned to tracks. This amounts to a set having a false alarm rate of 104. i.e., one clutter point in every 104
decrease of Sryld1 for every clutter point assigned to a track. Therefore, measuremnts, using the refined scoring algorithm defined in Section 3,
the net increase in the expected cost by assigning the k closest clutter we have found that we can effectively decrease this false alarm rate to
poinas out of NC to tracks is given by: It0n. This represents a three-order-of-magnitude decreasec and, hence,

It the detection capabilities of the tracking algorithm have been signifl-

1: !!
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